SHORT COMMUNICATIONS

283

ZrAl m m m
Pra— e
X z
y . g v 5
v O o 0O |
& ; —
Qo i O To O

N
o)
E )

)
o

s
I
NN

©
=

e
T
B

Fig. 2. (a) A projection of ZrAl, from the layer 1’ to the layer 3’ down the 2z axis.

5
O o
&
-

()

J ¢ E

(b) A projection of ZrAl, down the z axis

indicating the cell chosen for the comparison and giving the 2 co-ordinates of the atoms as fractions.

parallel to the layers at 3’, whereas in Zr,Al, the sequences
1-3 and 3-5 are related by a d glide plane at 3. The rela-
tionship between 57" and 7-1’ differs in this same way
from that between 5-7 and 7-1. The repeat units 1-5
and 5’-1" of ZrAl, are related by a mirror plane parallel
to the layers at 5 whereas in Zr,Al; the units 1-5 and
5-1 are related by a d glide plane at 5.

It should be noted that in ZrAl, the hexagons of a
kagomé net are centred by zirconium atoms from both
sides. In Zr,Al; the sequences are staggered so that one
of these zirconium atoms is placed at the vacant site of
the kagomé-type aluminium layer, thus producing a
puckered triangular net. This might be taken to account
for a relative contraction in the direction of stacking.
From the figures other differences will be observed to be
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glight. The formulae are reconciled by noting the dif-
ference in the composition of the kagomé-type aluminium
layers.

The two structures might therefore be considered as
made up from sequences which are fundamentally similar,
the main difference between them being the way in
which the sequences are staggered.
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(Beceived 25 October 1960 and in revised form 31 July 1961)

Presently the deconvolution of the Patterson function
is attempted by the minimum function which is cal-
culated by shifting the origin of the Patterson diagram
by any interatomic vector ug, and plotting the minima
of the two values that superimpose. Though it is well
known that the diagram gives the structure duplicated
by its inverse about the midpoint of the shift-vector the
symmetry of the diagram, S(M), has not been completely
investigated. We try to carry out this study here and
indicate that S(#) depends on the shift-vector and

therefore can possibly lead to a method of distinguishing
some of the Harker peaks from ghosts and some methods
for solving centrosymmetric structures.

The theory is developed through an application of the
matrix theory to the Patterson diagram (Buerger, 1950).
In our discussion the set of N? interatomic vectors are
represented as a square array U; where uy=r;—1ry,
r; being the atomic position-vector. The matrix us; + ugp
implies shifting the Patterson by the vector ugs. We first
consider the case where ug is a general vector, i.e. atoms
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a and b are not symmetry-related. The elements of one
particular column and row of the first matrix will be
identical with some one column and row of the second
matrix and are defined by us; and wup. Thus the M-
function drawn for the vector u,y gives a centric con-
figuration of (2N —2) peaks at +(r;—3(r,+rp)) with
strengths of f; Min (fq, f») where Min (f,, fy) is the lesser
of fy and fp. The S(M) is just PT, A1, F1 or I1 according
as the lattice is P, 4, F, or I. The lattice-type of the
fundamental space is retained in S(M) but the rest of
the symmetry degenerates into just an inversion-center.
The M-function consists of two ‘molecules’ related by
inversion. By a ‘molecule’ is meant the composite con-
figuration of the N atoms of one unit cell of the crystal.
Thus the minimum function gives this composite con-
figuration and its enantiomorph. S(M) can be higher
only if the shift-vector ugp is a special type of Harker
vector. It is not enough if the atoms ¢ and b are sym-
metry-related. It is necessary that the vector u.p passes
through the symmetry-element in question, for example,
(2x, 4, 22) in P2, or P4,. The M-function, then, contains
the composite structure and its ‘enantiomorph’, the
symmetry-element involved and its ‘enantiomorph’ com-
ing into juxta-position. The resultant symmetry is then
what is common to both sets. In P11, all vectors are
general and S(M) is only PI. In P2, special Harker vec-
tors are possible and S(M) can be P2/m. In P3, they are
impossible and S(M) can never be greater than PI.
In P4, they are possible and S(Jf) can even be P4/m.
When screw axes, in general mp, are present then,
(1) when n is odd S(M) can equal only P1 because special
Harker vectors are impossible and (2) when n is even
but p/n is not half, S(M) is only P2,/m but (3) when n
is even and p/n is half S(}M) can equal the space group
plus inversion. An example of (1) is P3,, while examples
of (2) are P4,, P6, and 6, and of (3) are P2,, P4, and P6,.
When the mirror and glide planes are present, they lead
only to special Harker vectors and higher symmetry is
possible, for example, S(M)=P2/a in Pa. In a case like
P2,/a where both screw axes and glide planes are present
two types of special vectors are possible. The first passes
through the screw 2, and the corresponding S(Af)
eliminates the glide and gives P2,/m while the second
passes through the glide plane and the corresponding
S(M) is P2/a, the screw having been eliminated. Thus all
vectors except special Harker vectors give only S(M)=
P1. Hence, if for a specific vector, S()>P(1) it is a
special Harker vector. Therefore, if one studies the
symmetry of the M -function of all the peaks on a Harker
section systematically, then, those which give S(M)=
P(1) are just ghosts and not genuine Harker peaks.
We next consider a centrosymmetric crystal of N
point atoms of unit strength at ry; (=1 to N/2; ra;=
—7v-nj)- The matrix w; has besides the usual anti-
symmetry, an interesting property that anyone column
of the matrix has a corresponding row identical with it.
This is equivalent to the statement that the Patterson
consists of N single points corresponding to the through-
center vectors +2rpy; and (N2 —2N)/2 double points at
+(ryi £ ray) (¢4 7), besides the usual origin-point N.
The single-point vector is a special vector and refers to
the symmetry element, inversion-center. The double-
point vector refer to general vectors and also special
Harker vectors produced by symmetry elements other
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than the inversion-center. A double-point general vector
gives S(M)=P(1). We have two ‘molecules’ as before.
Each ‘molecule’ possesses the symmetry of the fundamen-
tal structure and in particular, an inversion-center. This
inversion-center acts only within the group. Thus we have
two groups of points each possessing an auxiliary in-
version-center and both related by the main inversion-
center. If the double-point vector corresponds to a special
Harker vector then S(Jf) can be greater than P1 because
in this case the main inversion-center lies on the sym-
metry element in question. Thus a diad, tetrad or hexad
will be followed by a perpendicular mirror plane while
a mirror plane will be followed by a diad and so on.
The M-function corresponding to a single-point-vector
will give the structure; only in this case will S(}) equal
the space group.

The above discussion suggests two methods for solving
centrosymmetric structures. If the N-single points are
resolved from the (N2?—2N)/2 double points then the
structure is there right in the Patterson function though
on twice the scale. This straightforward procedure
may not work if the Patterson function has strong overlap
in three dimensions. However, even in such a case, at
least some of the atomic positions may be obtained by
finding the total weight around each Patterson peak.
If this were normalized in terms of the weight of the
single-point then a peak of odd number corresponds to
a possible atomic coordinate on twice the scale. At first
sight it appears that single points can overlap with only
double points. If this were true then all the N atomic
positions can be obtained by the above odd-weight
method. But unfortunately single points can overlap
among themselves, if, by accident, two atoms have
coordinates (g, Ya, 2¢) and (zq+e, Yo +e, 24 +¢) where
e =0 or }. Hence the number of odd-weight peaks will be
less than N so that only a partial solution of the structure
is possible. The second method is based on the minimum
function. A direct method demands the identification of
at least one single point in the Patterson function. The
corresponding A -function gives the structure. But the
number of single peaks is, in general, much smaller than
the number of double peaks. Therefore, it may be possible
to identify only the double points. The corresponding
M-function will give two images of the structure, that is,
(2N — 2) distinetly different peaks unless the double point.
is the result of superposition of two single points, in
which case, the minimum function will give only N peaks.
The problem of extracting one image is solved by locating
the auxiliary inversion-centers by a trial and error
method. Any two out of the (2N —2) points are randomly
joined and with the mid-point of this straight line as
origin it is tested whether there exist two others centri-
cally related about this origin. If so, it is a possible
auxiliary center and the other (N —4) points that are
centrically related about this origin can be discovered
pair by pair.
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