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Fig. 2. (a) A projection of ZrA12 from the layer 1' to the layer 3" down the z axis. (b) A projection of ZrA12 down the x axis 
indicating the cell chosen for the comparison and giving the x co-ordinates of the atoms as fractions. 

parallel  to the layers at  3', whereas in Zr2A1 a the sequences 
1-3 and  3-5 are re la ted by a d glide plane at  3. The rela- 
t ionship be tween 5 ' -7 '  and  7 ' - I '  differs in this same way  
from tha t  between 5-7 and 7-1. The repeat  units  1'-5'  
and  5"-i" of ZrA12 are related by a mirror  plane parallel 
to the layers at  5' whereas in Zr2A13 the units  1-5 and 
5-1 are re la ted by a d glide plane at  5. 

I t  should be no ted  tha t  in ZrA12 the hexagons of a 
kagom@ net  are cent red  by zirconium atoms from both  
sides. In  Zr~A13 the sequences are s taggered so tha t  one 
of these zirconium atoms is placed a t  the vacan t  site of 
the kagom@-type a lumin ium layer,  thus  producing a 
puckered  t r iangular  net.  This migh t  be taken  to account  
for a relat ive contract ion in the direct ion of stacking.  
F r o m  the figures other  differences will be observed to be 

slight. The formulae are reconciled by not ing  the dif- 
ference in the composit ion of the kagom@-type a lumin ium 
layers. 

The two s t ructures  migh t  therefore be considered as 
made  up from sequences which are fundamenta l ly  similar, 
the  main  difference between them being the way  in 
which the sequences are staggered. 
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Presen t ly  the  deconvolut ion of the Pa t t e r son  funct ion 
is a t t emp ted  by  the m i n i m u m  funct ion which is cal- 
cula ted  by shifting the origin of the Pa t te r son  diagram 
by any  in tera tomic  vector  Uab and  plot t ing the min ima  
of the two values tha t  superimpose. Though it is well 
known tha t  the d iagram gives the s t ructure  dupl ica ted  
by its inverse about  the midpoin t  of the shift-vector the 
s y m m e t r y  of the diagram,  S(M), has not  been completely 
invest igated.  We t ry  to carry out  this s tudy  here and  
indicate  tha t  S(M) depends on the shif t-vector and 

therefore can possibly lead to a me thod  of dist inguishing 
some of the Ha rke r  peaks from ghosts and some methods  
for solving cen t rosymmetr ic  s t ructures .  

The theory  is developed through an applicat ion of the 
mat r ix  theory  to the Pa t te r son  diagram (Buerger, 1950). 
I n  our discussion the set of N 2 in tera tomic  vectors are 
represented as a square ar ray  u~j where  u i j = r ~ - r j ,  
r j  being the atomic posit ion-vector.  The mat r ix  u~j + Uab 
implies shifting the Pa t t e r son  by the vector  Uab. We first 
consider the ease where ua~ is a general  vector,  i.e. a toms 
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a and  b are not  symmetry- re la ted .  The elements of one 
par t icular  column and row of the first mat r ix  will be 
identical  wi th  some one column and row of the second 
mat r ix  and are defined by Uaj and u~b. Thus the M- 
funct ion drawn for the vector  Ua~ gives a eentric con- 
f igurat ion of ( 2 N -  2) peaks at  + ( r j - ~  (ra + rb)) wi th  
s trengths of f j  Min (fa, fb) where Min (fa, fb) is the lesser 
of fa  and lb. The S(M) is just  P1,  A1, F1  or I1  according 
as the latt ice is P ,  A, F ,  or I .  The la t t ice- type of the 
f tmdamenta l  space is re ta ined in S(M) but  the rest of 
the  s y m m e t r y  degenerates  into just  an inversion-center.  
The M-func t ion  consists of two 'molecules'  related by 
inversion. By a 'molecule '  is mean t  the composite con- 
f iguration of the N atoms of one uni t  cell of the crystal.  
Thus the m i n i m u m  function gives this composite con- 
f igurat ion and its enant iomorph.  S(M) can be higher 
only if the shift-vector Uab is a special type  of Ha rke r  
vector.  I t  is not  enough if the atoms a and b are sym- 
met ry- re la ted .  I t  is necessary tha t  the  vector  uab passes 
through the symmet ry -e lement  in question, for exmnple, 
(2x, ½, 2z) in P21 or P41. The M-funct ion,  then,  contains 
the composite s t ruc ture  and its ' enant iomorph ' ,  the 
syramet ry-e lement  involved and its ' enant iomorph '  com- 
ing into juxta-posi t ion.  The resul tant  symmet ry  is then 
wha t  is common to both sets. In  P1,  all vectors are 
general  and S(M) is only P1.  In  P2,  special Harke r  vec- 
tors are possible and S(M) can be P2/m. In  P3,  they  are 
impossible and  S(M) can never  be greater  than  P1.  
In  P4, they  are possible and  S(M) can even be P4/m. 
W h e n  screw axes, in general  np, are present  then,  
(1) when  n is odd S(M) can equal only P1  because special 
t t a r k e r  vectors are impossible and (2) when n is even 
but  p/n is not  half, S(M) is only .P21/m but  (3) when  n 
is even and p/n is half S(M) can equal the space group 
plus inversion. An example of (1) is P31, while examples 
of (2) are P41, P61 and  P6~ and  of (3) are P21, P42 and P63. 
When  the mirror  and glide planes are present,  they  lead 
only to special Ha rke r  vectors and  higher s y m m e t r y  is 
possible, for example,  S(M)=P2/a in Pa. In  a ease like 
P21/a where both screw axes and glide planes are present  
two types of special vectors are possible. The first passes 
th rough the screw 2, and the corresponding S(M) 
eliminates the glide and gives P2,/m while the second 
passes th rough the glide plane and the corresponding 
S(M) is P2/a, the  screw having been el iminated.  Thus all 
vectors except  special Harke r  vectors give only S(M)= 
P I .  Hence,  if for a specific vector,  S(M)>P(1) it is a 
special t I a rke r  vector.  Therefore, if one studies the 
s y m m e t r y  of the ~V/-function of all the  peaks on a Harke r  
section systematical ly,  then,  those which give S(M)= 
P(1) are just  ghosts and  not  genuine Harke r  peaks. 

We next  consider a eent rosymmetr ie  crystal  of ~" 
point  a toms of uni t  s t rength  at  rzvj (j = 1 to N/2; rx j  = 
--r(N-Nj). The mat r ix  u~3 has besides the usual anti- 
symmet ry ,  an interest ing proper ty  tha t  anyone  column 
of the  mat r ix  has a corresponding row identical with it. 
This is equivalent  to the s t a t ement  tha t  the Pa t te rson  
consists of _hr single points corresponding to the through- 
center  vectors _ 2riv)- and  (N ~ -  2N)/2 double points at  
__(rm__rNj) (i+-j), besides the usual origin-point X.  

The single-point vector  is a special vector  and refers to 
the  s y m m e t r y  element,  inversion-center.  The double- 
point  vector  refer to general vectors and also special 
I t a rke r  vectors produced by symmet ry  elements  other  

than  the inversion-center.  A double-point  general vector  
gives S(M)=P(1). We have two 'molecules'  as before. 
Each  'molecule'  possesses the s y m m e t r y  of the fundamen-  
tal s t ructure  and in part icular ,  an inversion-center.  This 
inversion-center  acts only within  the group. Thus we have  
two groups of points each possessing an auxil iary in- 
version-center  and both related by the main  inversion- 
center.  If the double-point  vector  corresponds to a special 
Ha rke r  vector  then S(M) can be greater  than  P 1  because 
in this ease the main inversion-center  lies on the s3~m- 
me t ry  element  in question. Thus a diad, t e t rad  or hexad 
will be followed by a perpendicular  mirror  plane while 
a mirror  plane will be followed by a diad and so on. 
The M-funct ion  corresponding to a single-point-vector 
will give the s t ructure ;  only in this ease will S(M) equal 
the space group. 

The above discussion suggests two methods  for solving 
eent rosymmetr ie  s tructures.  If the N-single points are 
resolved from the (N 2 - 2 N ) / 2  double points then  the  
s t ructure  is there r ight  in the Pa t te rson  function though 
on twice the  scale. This s t ra ightforward procedure  
may  not work if the Pa t te rson  function has strong overlap 
in three dimensions.  However ,  even in such a case, a t  
least some of the atomic positions m a y  be obtained by 
finding the total  weight  a round each Pa t te r son  peak.  
If  this were normalized in terms of the weight  of the  
single-point then a peak of odd number  corresponds to 
a possible atomic coordinate on twice the scale. At  first 
sight it appears tha t  single points can overlap with  only 
double points. If  this were t rue then all the N atomic 
positions can be obta ined by the above odd -we igh t  
method.  Bu t  unfor tuna te ly  single point.s can overlap 
among themselves,  if, by  accident ,  two atoms have  
coordinates (xa, ya, za) and (Xa+e, ya+e, za+e) where  
e = 0 or ½. Hence  the number  of odd-weight  peaks will be 
less than  N so tha t  only a part ial  solution of the s t ruc ture  
is possible. The second method  is based on the min imum 
function.  A direct  me thod  demands  the identif icat ion of 
at  least one single point  in the Pa t te r son  function.  The 
corresponding 3 l - func t ion  gives the s t ructure .  But  the  
number  of single peaks is, in general, much  smaller than  
the number  of double peaks. Therefore, it m a y  be possible 
to identify only the double points. The corresponding 
21l-function will give two images of the s t ructure,  t ha t  is, 
(2X - 2) dis t inct ly different peaks unless the double point  
is the result  of superposit ion of two single points, in 
which case, the min imum funct ion will give only N peaks.  
The problem of ext rac t ing one image is solved by locating 
the auxil iary inversion-centers by  a trial and error  
method .  Any two out  of the ( 2 N -  2) points are r andomly  
joined and wi th  the  mid-point  of this s t ra ight  line as 
origin it is tes ted whether  there  exist two others centri- 
cally re la ted about  this origin. If so, it is a possible 
attxiliary center  and the other  ( N - 4 )  points t ha t  are 
centr ical ly re la ted about  this origin can be discovered 
pair by pair. 
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